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ANALYSIS OF THE COMPLEXITY OF THE 
FORMALIZED CIRCUITS OF RAYCHEV 

 
Nikolay Raychev 

 
Abstract - In this study is carried out an analysis of the classical and quantum complexity of the defined by the author 
formalized circuits and is shown, that the circuits require several classic computations. The formalized circuits of 
Raychev have almost the same quantum complexity as the non-general circuits. Since the represented circuit models 
are independent of the techniques for matrix decomposition and the processes for global optimization, used to find the 
quantum circuits for a given operator, on quantum computers can be made simulations with a high accuracy for the 
unitary propagators of molecular Hamiltonians. As an instance, we show how to be constructed a circuit model for a 
hydrogen molecule.   
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1. INTRODUCTION 
 

In classic formalized schemes three factors determine the parameters of the implementation: the quality of the tools for 
computer design, which are used for mapping of the formalized circuits, the quality of the architecture, and the design on 
electrical/transistor level. Similarly, the three most important factors, which determine the parameters of the 
implementation of the quantum logic are summarized in: the tools for computer design, the programmable architecture 
and the implementation of the quantum operators. The quantum logic synthesis has shown that each unitary 
transformation can be realized by a set of single qubit operators plus CNOT. It should be noted that the arrays of quantum 
operators [22,23] usually are based on matrix decompositions. The goal of this study is to optimize the number of the used 
operators. However, these methods are suitable for execution according to the needs of the target logic, and not in a fixed 
architecture. The proposed formalized quantum scheme is suitable for simulation of each operator, by determining the 
values of the angle in the circuit; Thus, it can provide a certain target scheme through controlled operators. Considering the 
current limits of the quantum mechanics, on the basis of that formalized logic it may not be possible to realize a large 
quantum circuit. In this article, we use a method, based on several decompositions that can decompose an arbitrary п-qubit 
operator into a circuit, containing m-qubit operators and several diagonal operators. Mathematically, this means that each 
п-bit quantum operator can be expressed through the product of several m-qubit operators and several diagonal matrices. 
  
 

2. THE CIRCUITS 
 
In the classical and quantum complexities cases of the circuits, explained in [33], it is easy to be seen that they depend 
mainly on the values of the constantly controlled networks, such as the one in Fig. 5. Such a network, controlled by k qubits 
may be decomposed as 2k CNOT gates and 2k single rotational gates [12]. For example, the circuit, as illustrated for k = 2 in 
Fig. 5a, may be decomposed as in Fig. 5b. The values of the angles in the decomposed circuit are a solution of the linear 
equation system Mkθ = ϕ:  
 

𝑀𝑘 = �

𝜃1
𝜃2
⋮
𝜃2𝑘

�  = �

𝜙1
𝜙2
⋮
𝜙2𝑘

�  (1), 

 
where k is the number of the control qubits in the network, and the entered values of M are defined as:  
 

𝑀𝑖𝑗 = (−1)𝑏𝑖−1∙𝑞𝑗−1 (2), 
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in which the power is found by taking the scalar product of the standard binary code of the i − 1, bi−1  index, and the  binary 
representation of j – 1 integer of the code of Gray gj−1. Since Mk is a version of the matrix of Hadamard with reordered 
columns, we see that M is unitary. Thus (Mk)−1 = 2−k(Mk)T, the new values of the angles in the decomposed circuit are the 
result of a clean matrix vector multiplication [12]:  
 

𝜃 = 2−𝑘(𝑀𝑘)𝑇𝜙   (3). 
 
 

Fig. 1: The second circuit with initial blocks 4 by 4: The quantum gates in the networks controlled in a various way, after the  Vi blocks, 
combine small blocks and construct the N by N blocks at the end. The initial Hadamards are for modification of the input data. The Vi 

blocks are for the step of formation. 

 
Fig. 2: (a) Multi-controlled network with a code of Gray. (b) The decomposition of the network with a code of Gray in (a) into CNOT 

and into single quantum gates. 
 

 
 
A. The complexity of the first circuit model  
 
1. The classical complexity 
 
In the first diagram of a circuit (see  Fig. 3), because there is only one such network, we must multiply the 22n×22n matrix by 
the vector of dimension 22n, designed by taking the arc-cosines of each element of U. From here the classical complexity for 
each first circuit is O (24n). Since M is a reordered version of the matrix of Hadamard, through the use of a fast Hadamard 
transform 21, that requires O (NlogN) computations for vector transformation through a matrix of Hadamard, this can be 
achieved in:  
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𝑂(22𝑛 log(22𝑛)) = 𝑂(2𝑛22𝑛)    (4). 
 
2. The quantum complexity 
 
The quantum complexity of the circuit is the number of the gates needed to decompose the network, the combination of the 
blocks and their input modifications: 22n CNOT, 22n single rotation, 2n Hadamard, and n SWAP gates. 
 
B. The complexity of the second circuit 
 
The classical and quantum complexity for the second circuit are defined by the number of networks, which are formed by 
placing the quantum gates in blocks, controlled together, as shown in Fig. 6 and from the steps for combination. Since the 
quantum gates in the different blocks with the same angles operate for all cases of the control qubits, their placement 
together does not produce networks. Instead, they must be applied only once such as the control X gates, shown in Fig. 6c. 
From here, if the initial blocks of 2c by 2c (operating on c qubits) include m various quantum gates (the type of the gates is 
the same, but each ones requires various angles in various blocks such as R11 and R81 in Fig. 6), these blocks together 
produce m networks with code of Gray, controlled by 22n−c qubits. 
 
Additionally, in the step for combination we use binary coded networks on each one of the main qubits with the exception 
of the last c qubits for producing N by N blocks. Thus, we also have n − c networks with code of Gray for the step for 
combination, for which the number of the control qubits decrease by one from one step of combination to another (or from 
one network with code of Gray to another). The classical and quantum complexity will be determined mainly by the 
decompositions of these m + (n − c) networks. 

(a) 

(b) 

(c) 
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Fig. 3: The circuit in (a) with initial blocks 4 by 4 can be represented as in (b) through the use of the circuit, given in Fig. (7). Without 
altering the order of the gates, that have the same control state, the gates can be relocated in order to form permanently controlled 

networks, such as in (c): If a gate have the same value of the angle for all control states such as the control X gates in the circuit, they are 
equivalent to a single gate (in the case of a X gate in the circuit is necessary only one CNOT). 

 

 
 
1. Classical complexity 
 
As we said in [33], in the step of forming, the combination of decomposed block circuits together form m networks with 
code of Gray for m different gate as represented for two-qubit blocks in Fig. 6. From here in order to find the 
decompositions of these networks, as in Fig. 5b through the formula given in equation (15), are necessary m number of 
matrix-vector multiplications: The dimensions of the matrices are 22n−c×22n−c, and the dimensions of the vectors are 22n−c. 
Using a fast Hadamard transform, the complexity of this part will be Of = O (m(2n−c)(22n−c)) instead of O (m(22n−c)2) by a 
simple matrix-vector multiplication. 
 
In addition, the step for combination is summation of the computations made to find the angles of the (n-c) networks with 
code of Gray (remember, that the number of the control qubits reduces by one from one network to another). This is equal 
to O ((22n−c−1)2)+O ((22n−c−2)2)+· · ·+O ((22n−c−n+c)2) = O (24n−2c−22n) through a simple matrix-vector multiplication. Through a 
fast Hadamard transform, the complexity of the step for combination is as follows:  
 
𝑂𝑐 = 𝑂�(2𝑛 − 𝑐 − 1)(22𝑛−𝑐−1)�+  𝑂�(2𝑛 − 𝑐 − 2)(22𝑛−𝑐−2)�+⋯+ 𝑂(𝑛2𝑛) 
= 𝑂�2 × (1− (2𝑛 − 𝑐)22𝑛−𝑐−1 + (2𝑛 − 𝑐 − 1)22𝑛−𝑐)−𝑂�2 × (1 − 𝑛22𝑛−1 + (𝑛 − 1)2𝑛)�� 

= 𝑂�(2𝑛 − 𝑐 − 2)2𝑛−𝑐 − (𝑛 − 2)2𝑛�         (5). 
 
Thus, while the total complexity through the elementary multiplication is  
 

= 𝑂(24𝑛−2𝑐 − 22𝑛) +  𝑂(𝑚(22𝑛−𝑐)2) 
= 𝑂�(𝑚 + 1)24𝑛−2𝑐 −  22𝑛�         (6), 

 
through a fast Hadamard transform, it is:  
 

𝑂𝑓 + 𝑂𝑐 = 𝑂�(𝑚 + 1)(2𝑛 − 𝑐)22𝑛−𝑐 − 22𝑛−𝑐+1 − (𝑛 − 2)2𝑛�    (7). 
 
2. The quantum complexity 
 
In regard to the quantum complexity the analysis follows the same structure: as was mentioned before, the m different 
gates in the blocks on c qubits create m networks, that are controlled by 2n − c qubits. The decomposition of these networks 
requires m22n−c CNOT and the same number of single gates.  
Since the n−c combinations (n−c network) are needed, the complexity of the step for combination is the sum of the n − c 
periods: 22n−c−1 + 22n−c−2 + · · · + 22n−c−n+c = 22n−c − 2n.  
 
After this the total CNOT complexity shall be read as:  
 

22𝑛−𝑐 − 2𝑛 +𝑚22𝑛−𝑐 +Φ = (𝑚 + 1)22𝑛−𝑐 − 2𝑛 +Φ  (8), 
 
where Φ represents the gates in each block, which must be run only once. 
 
For example: As an example the complexity of a basic block circuit with size of 4 by 4 can be found as follows: Through the 
use of a decomposition of Schmidt4 each 1 by 4 single vector ux may be decomposed as: ux = ∑2 i=1 aiv1i ⊗ v2i . Since V1 and 
V2, composed of vectors v1 i and v2i , are 2 by 2 unitary matrices, these matrices (with the elements (cos1 and sin1 for V1 and 
cos2 and sin2 for V2) and the coefficients satisfying |a1|2 +|a2|2 = 1, can be accepted for rotational gates. For the 
coefficients, a1 and a2 are values of cosine and sine of a rotational gate (a1 = cosa and a2 = sina). The obtained decomposition 
becomes equal to the following:  
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𝑈𝑥𝑇 = �

𝑎1𝑐𝑜𝑠1𝑐𝑜𝑠2 + 𝑎2𝑠𝑖𝑛1𝑠𝑖𝑛2
−𝑎1𝑐𝑜𝑠1𝑠𝑖𝑛2 + 𝑎2𝑠𝑖𝑛1𝑐𝑜𝑠2
−𝑎1𝑠𝑖𝑛1𝑐𝑜𝑠2 + 𝑎2𝑐𝑜𝑠1𝑠𝑖𝑛2
𝑎1𝑠𝑖𝑛1𝑠𝑖𝑛2 + 𝑎2𝑐𝑜𝑠1𝑐𝑜𝑠2

�     (9), 

 
which generally requires three rotational gates. The circuit, given in Fig. 7, form each ux as a leading row of its 4 by 4 
matrix. 
 
Therefore, this circuit for realization of the blocks in Fig. 4 gives c = Φ = 2 and m = 3; thus the CNOT complexity of the 
entire circuit in Fig. 4 is reported as 22n − 2n + 2. Please also pay attention that if the blocks in the circuit, shown in Fig. 4, 
were of a size 2 by 2, then the complexity would be 22n − 2n. 

 
 

Fig. 4: The quantum circuit, which is found by following the decomposition of Schmidt and can generate any vector of a size 4 as the 
first row of its matrix presentation. 

 
 
C. Comparison with the non-formalized circuit models  
 
The reported non-general circuit models possess CNOT complexities, varying from O (n322n) to the most effective one ¾ 22n 
– 3/2 2n. The proven lower limit for the CNOT complexity is (22n−2−3n/4−1/4) without the use of ancilla qubits20. Although 
the circuit models given in this report, are main and fixed dimensions for each operator, their complexity is greater 
approximately by a factor of 2, in comparison with the non-general circuits. Additionally, if we can make m less than or 
equal to 2c−2, then we can also go below the lower limit. This is likely to become, since the usual quantum gates in the blocks 
(as two CNOT in 4 by 4 blocks) do not have influence on the upper limit of the complexity. From here, by taking advantage 
of this property, the upper limit of the complexity can be decreased by using higher Hilbert spaces. 
 
D. Simulation of Molecular Hamiltonians 
 
The exponential growth of computational complexity in terms of the number of atoms is a huge challenge for the accuracy 
of the quantum chemical computations. Even for a simple molecule such as the methanol, the use only of 6-31G** basis for 
valence electrons, exist 50 orbitals. The 18 valence electrons may be distributed in these orbitals in a manner that satisfies 
the principle of exclusion of Pauli. This leads to around 1017 possible configurations, which makes the computation of the 
full configuration interaction (FCI) almost impossible on the classical computers6. It is known, however, that the quantum 
computer can be used for effective evaluation of the energies in the ground and exited state of the molecules6,23–32. For 
simulation of the quantum systems it is necessary to be found an equivalent quantum circuit to the unitary propagator of 
the Hamiltonian that represents this system. The molecular electronic Hamiltonian, in the approximation of Born-
Oppenheimer, has been described in the second quantization form as [6,16,27]:  
 

𝐻 = ∑ ℎ𝑝𝑞𝑎𝑝
†𝑎𝑞𝑝𝑞 + 1

2
∑ ℎ𝑝𝑞𝑟𝑠𝑎𝑝

†𝑎𝑞
†𝑎𝑠𝑎𝑟𝑝𝑞𝑟𝑠      (10), 

 
where the matrix elements hpq and hpqrs are a set of one- and two-electron integrals, and aj and a†j spinless fermionic 
operators of annihilation and creation. Lets suppose that the set of single-particle spatial functions compose the molecular 
orbitals {φ(r)}Mk=1 and the set of spin orbitals{χ(x)}2Mp=1 is defined by  χp = φ iσ i  , and the set of the spatial-spin coordinates x 
= (r, ω), where  σ i is a spin-function. The single-electron integral is defined as  
 

ℎ𝑝𝑞 = ∫𝑑𝑥𝜒𝑝∗(𝑥)�− 1
2
∇2 − ∑ 𝑍𝛼

𝑟𝛼𝑥𝛼 �𝜒𝑞(𝑥) = �𝜑𝑝�𝐻1�𝜑𝑞�𝛿𝜎𝑝𝜎𝑞   (11), 
 
and the two-electron integral is:  
 

ℎ𝑝𝑞𝑟𝑠 = ∫𝑑𝑥1𝑑𝑥2
𝜒𝑝∗ (𝑥1)𝜒𝑞∗ (𝑥2)𝜒𝑠(𝑥1)𝜒𝑟(𝑥2)

𝑟12
= �𝜑𝑝��𝜑𝑞�𝐻2�𝜑𝑟��𝜑𝑠�𝛿𝜎𝑝𝜎𝑞𝛿𝜎𝑟𝜎𝑠   (12), 
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where rαx is the distance between the αth nucleus and the electron, r12 is the distance between the electrons, ▽2 is the 
Laplacian of electron-spatial coordinates, and χp(x) is a selected single-particles basis:  χp = φpσp, χq = φqσq,χr = φrσr , и χs = 
φsσs. 
 
In order to describe the hydrogen molecule in a minimal basis, which is the minimum number of spatial functions required 
to describe the system, one spatial function is necessary per one atom, marked as φH1 and φH2. The molecular spatial 
orbitals are defined by symmetry: φg = φH1 + φH2 and φu = φH1 − φH2; which corresponds to four spin-orbitals: |χ1› = 
|φg›|α›, |χ2› = |φg›|β›, |χ3› = |φu›|α›, and |χ4› = |φu›|β›. The basis STO-3G is used in order to calculate the 
dimensional integrals of the Hamiltonian which is defined as H = H(1) +H(2), where since hpqrs = hpqsr, H(1) and H(2) are 
simplified as6,16,27:  
 

𝐻1 = ℎ11𝑎1
†𝑎1 + ℎ22𝑎2

†𝑎2 + ℎ33𝑎3
†𝑎3 + ℎ44𝑎4

†𝑎4      (13) 
 
and  
 

𝐻2 =
ℎ1221𝑎1

†𝑎2
†𝑎1𝑎2 + ℎ3443𝑎3

†𝑎4
†𝑎3𝑎4 + ℎ1441𝑎1

†𝑎4
†𝑎1𝑎4 + ℎ2332𝑎3

†𝑎2
†𝑎3𝑎2 + (ℎ1331 − ℎ1313)𝑎1

†𝑎3
†𝑎1𝑎3 + (ℎ2442 − ℎ2424)𝑎2

†𝑎4
†𝑎4𝑎2 +

ℎ1423�𝑎1
†𝑎4

†𝑎2𝑎3 + 𝑎3
†𝑎2

†𝑎4𝑎1�+ +ℎ1243(𝑎1
†𝑎2

†𝑎4𝑎3 + 𝑎3
†𝑎4

†𝑎2𝑎1)     (14). 
 
The values of the spatial integral, calculated for the atomic distance 1.401a.u., the Hamiltonian matrix, found as 16 by 16 
matrix6, such that 4 qubits are necessary for realizing an unitary propagator of this Hamiltonian, which is found by e−iHt by 
adjusting  t = 1. [33]. 
 
The accuracy of the circuit model for the unitary propagator also defines the simulation accuracy. The quantum circuits 
generation through the use of techniques for matrix decomposition or methods of global optimization [34] requires the 
search of a huge complex space and simulation of the quantum systems unitary matrices on classical computers. For large 
matrices, this affects the efficiency, and consequently, the circuits's accuracy. Since the angles of the rotational gates in our 
circuits are defined directly by the matrix elements (e.g. in the first circuit, Fig. 3), we only take the values arcosine, and the 
generation of these angles requires only a few calculations; the circuits always have high accuracy and efficiency. This helps 
to be obtained very accurate circuit models for the simulation of the quantum circuit. For example, for the 16 by 16 unitary 
propagator of hydrogen molecules, given in reference 6, are required nine qubits in the circuit scheme in Fig. 3. Since the 
unitary propagator is extremely disperse and has only 19 non-null elements, the most of the constantly controlled gates in 
the circuit will be identity, except for 19 of them. From here in Annex B, we show how to reduce the number of the qubits to 
6 qubits, Fig. 8. We give the rotational values for the gates in Table I. Therefore, since our circuit models have a fixed model, 
the use of different basic sets or parameters for computation of the Hamiltonian will not change the circuit model, and its 
accuracy.  
 
Briefly, we represent general formalized quantum circuits, which can simulate any given 2n by 2n real matrix. Due to the 
structure of the circuits, they may be used for production of specific or multi-functional quantum chips and processors. 
Since the circuit models depend exclusively from the matrix elements, for the application of specific circuits, aiming to 
realize a certain type of systems, each level of rarity in the system can reduce the number of the gates significantly. 
Additionally, we show that, the generation of circuits with complexity less than the lower limit is possible, by making m ≤ 
2c−2 and increasing Φ in the given complexity. 
 
 

3. CONCLUSION 
 
It is important to note that, in this work, although we have in mind real matrices, it is not difficult to realize each complex 
case both through consideration of each rotational gate as capable to produce each complex element of an unitary matrix in 
the first model of a circuit. This may require more than one conventional rotational gate, but should not increase the upper 
limit of the quantum complexity. The modification of the second circuit, however, may not be so simple, as in the first one: 
it may require additional gates during the steps for combination and formation. 
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